Показано, что перспективный твердый электролит боится воды — yo-robot.ru

Исследователи Сколтеха совместно с коллегами показали, что LATP – твердый электролит, который можно было бы использовать в накопителях энергии нового поколения, очень чувствителен к воде, что непосредственно влияет на производительность и срок службы аккумуляторов.

Сколтех # LATP # аккумуляторы # вода # Сколтех # электролит Потеря общей ионной проводимости LATP при пребывании в воде / ©Pavel Odinev / Пресс-служба Сколтеха

Результаты исследования опубликованы в журнале Chemistry of Materials. Возобновляемые источники энергии (ВИЭ) во всем мире вызывают большой интерес благодаря их экологичности и высокой эффективности преобразования энергии, однако их внедрение связано с серьезными проблемами из-за присущего им цикличного и непостоянного характера работы. Потому что за режимом генерации энергии следует период простоя.

Вполне очевидно, что такой источник питания с непредсказуемой цикличностью вряд ли заинтересует потребителя. Но у этой проблемы существует решение – накопители энергии. Предполагается, что они будут аккумулировать спонтанно генерируемую энергию, а затем поставлять ее в соответствии с уровнем потребления, тем самым обеспечивая стабильное и адаптивное электроснабжение.

Наиболее перспективными среди широкого спектра систем накопления энергии считаются проточные редокс-аккумуляторы благодаря легкости масштабирования, удобству в работе и возможности контроля выходной мощности. Проточный редокс-аккумулятор – это, по сути, обычный аккумулятор, но «наоборот»: в редокс-аккумуляторе в качестве электродов используются жидкости (анолит и католит), а в качестве ионопроводящего электролита – твердая мембрана. Поскольку именно свойства мембраны определяют конечные рабочие показатели и срок службы аккумулятора, ученые рассматривают возможность изготовления мембран из различных материалов, в том числе неорганических и полимерных.

Одним из таких соединений является LATP — Li1.3Al0.3Ti1.7(PO4)3. Это хорошо известный литиевый проводник из семейства NASICON, которое получило название от первых подробно описанных натриевых проводников Na Super Ionic CONductor. Все проводники этого семейства имеют схожую кристаллическую структуру, которая и определяет высокую ионную проводимость соединений.

Метод твердотельного синтеза с использованием сжигаемого сепаратора. Подготовка реагента / ©pubs.acs.org

Хотя проводимость и структурные особенности LATP описаны достаточно подробно, их устойчивость к воздействию таких факторов окружающей среды, как воздух и вода, пока остается малоизученной. Научный сотрудник Центра энергетических технологий Сколтеха (CEST) Мариам Погосова и ее коллеги решили выяснить, влияет ли чистая вода на свойства LATP.

«LATP вызывал у нас большой интерес: это хорошо известный суперионный проводник с высоким потенциалом для дальнейшего химического и технологического усовершенствования. Известно, что у LATP есть и ряд недостатков, таких как высокая хрупкость и низкая устойчивость к воздействию металлического лития. Тем не менее, эти недостатки нас не смущали, так как мы планировали компенсировать их за счет создания композитного материала, и мы приступили к работе», – объяснила Погосова.

Метод твердотельного синтеза с использованием сжигаемого сепаратора. Схема твердотельного синтеза / ©pubs.acs.org

В предыдущих исследованиях этой группы ученых было показано, что проводимость керамического LATP резко падает при хранении на воздухе или в аргоне. Исследователи выдвинули гипотезу о том, что главной причиной снижения проводимости может быть влажность, и решили проверить, как вода воздействует на LATP.

Сначала ученые синтезировали LATP путем новаторской двухстадийной твердофазной реакции. Затем полученные образцы LATP помещали в деионизированную воду и выдерживали их вплоть до 12 часов. После этого исследователи анализировали электрохимические, структурные, химические и морфологические свойства образцов, подкрепляя результаты методами теоретического моделирования.

В ходе экспериментов было показано, что при контакте с водой свойства керамики LATP существенно ухудшаются: после двухчасовой выдержки в воде общая ионная проводимость снижается на 64 процента. Ученые также наблюдали появление микротрещин, искажение формы зерна, образование наночастиц, изменения химического состава вещества, сжатие элементарной ячейки, а также изменения внутриструктурных полиэдров. На основе этих наблюдений ученые пришли к выводу, что керамика LATP высокочувствительна к воде и, вероятно, не может применяться в водных проточных редокс-аккумуляторах.

«Очевидно, LATP слишком подвержен воздействию воды, что ставит под сомнение возможность его использования в проточных редокс-аккумуляторах, особенно водных. Хочу подчеркнуть, что условия работы системы «деионизированная вода/LATP», являющейся предметом данного исследования, не соответствуют реальным условиям работы проточного редокс-аккумулятора, так как растворы анолит/католит являются более сложными.

Поэтому пока я не рискну делать какие-либо прогнозы относительно перспектив применения LATP. Тем не менее, отмечу, что в результате исследования были получены важные фундаментальные знания, имеющие также практическую ценность: нам удалось показать, что при наличии воды в любом ее виде нужно быть настороже. Например, теперь мы знаем, что сохранить исходные характеристики керамики LATP можно при помощи простой сушки и вакуумирования», – сказала Мариам Погосова.

Она также отметила, что данная работа, как это ни удивительно, является первым столь детальным и всесторонним исследованием проблемы воздействия воды на LATP. «Мы планируем провести дополнительные исследования, чтобы уточнить поведение LATP в других средах и проверить, как этот проводник будет вести себя в условиях, соответствующих условиям работы проточных редокс-аккумуляторов», – добавила Погосова.

В совместном исследовании принимали участие специалисты МГУ имени М. В. Ломоносова и Федерального исследовательского центра химической физики имени Н. Н. Семенова РАН. Исследование проводилось в рамках проекта Lithium Redox Flow Batteries for High Power and High Energy Density Energy Storage по программе проектов следующего поколения Сколтех-MIT (The Next Generation).

Источник: naked-science.ru

Вы можете оставить комментарий, или ссылку на Ваш сайт.


Оставить комментарий

Вы должны войти, чтобы иметь возможность оставлять комментарии.