Создан новый метод 4D-моделирования зданий при помощи машинного обучения — Naked Science — yo-robot.ru

Группа ученых из Сколтеха и исследовательского института FBK (Италия) представили методику, позволяющую создавать 4D-модели зданий с помощью исторических карт и машинного обучения. Используя новую методику, можно не только предсказывать высоту зданий на основе их геометрических параметров, данных о районе и категории здания, но и получать более полную информацию о различных явлениях и изменениях в городской среде, сыгравших важную роль в формировании современного облика наших городов.

Сколтех

# 4D

# визуализация

# здания

# исторические карты

# машинное обучение

Болонья, Италия / ©Getty images

Результаты исследования опубликованы в журнале MDPI Applied Sciences. Наиболее важный источник информации для анализа изменений в городской застройке — исторические карты. Однако, на таких картах трехмерный мир представлен в двухмерном пространстве, которое лишь отражает главные особенности городской среды, не учитывая пространственную информацию и, в частности, данные о высоте зданий.

Исторические карты города Тренто (Италия) / ©www.mdpi.com

В приложениях для 3D/4D-моделирования городской среды на основе исторических данных отсутствие информации о высоте зданий – главная проблема, не позволяющая добиться требуемой точности в представлении, анализе, визуализации и моделировании объемного пространства.

Исторические карты города Болоньи (Италия) / ©www.mdpi.com

Ученые из Сколтеха и отдела 3DOM института FBK в Тренто исследовали возможности решений на основе машинного обучения по определению высоты зданий при помощи исторических карт местности. Разработанный метод протестировали на четырех исторических картах Тренто (1851, 1887, 1908 и 1936 годы) и Болоньи (1884 и 1945 годы), на которых отражены наиболее существенные изменения в городской застройке за последние столетия, и восстановили динамические 4D-версии этих городов.

«Разработанная нами методика обучения и предсказания, протестированная на исторических данных, оказалась эффективной и перспективной для целого ряда других приложений. Пока для предсказания используется небольшое число характерных признаков, но в ближайшее время мы планируем обобщить методику для решения реальных задач в условиях отсутствия данных о высотах рельефа местности.

Разработанные при помощи этой методики модели позволят восполнить нехватку геопространственных данных при исследовании исторических и труднодоступных ландшафтов», – рассказывает аспирант Сколтеха и FBK в Тренто Эмре Оздемир. 

Источник: naked-science.ru

Вы можете оставить комментарий, или ссылку на Ваш сайт.


Оставить комментарий

Вы должны войти, чтобы иметь возможность оставлять комментарии.