В МГУ сравнили воздействие пиролиза на разные типы фоторезистов — Naked Science — yo-robot.ru

Ученые сектора нанофотоники Центра квантовых технологий МГУ провели сравнительное исследование влияния пиролиза на твердые объекты размером в десятки микрометров, напечатанные с помощью технологии двухфотонной лазерной литографии из трех коммерчески доступных фоторезистов. Это поможет создавать износостойкие и надежные микро- и наноструктуры произвольной формы и почти любого назначения.

ЦКТ МГУ

# двухфотонная лазерная литография

# наноструктура

# пиролиз

# полимеры

# фоторезисты

В МГУ сравнили воздействие пиролиза на разные типы фоторезистов / ©Getty images

Двухфотонная лазерная литография (ДЛЛ) – одно из магистральных направлений в области развития аддитивных технологий, используемых для создания полимерных микро- и нанообъектов. Ее безусловный плюс – возможность создания структур практически любой трехмерной конфигурации, которые можно использовать при создании фотонных кристаллов, волноводов, различных механических устройств, а также в устройствах обработки и хранения информации.

Однако, несмотря на прекрасные возможности, предоставляемые этой технологией, она содержит и существенные ограничения. Выбор материалов при использовании ДЛЛ ограничен фоторезистами — полимерными светочувствительными материалами. Из-за прозрачности полимеров в видимом диапазоне, отсутствия электропроводности, посредственных механических свойств, а также низкой тепло- и радиационной стабильности практическое применение конструкций, созданных с помощью ДЛЛ, остается ограниченным. Преодолеть некоторые из существующих ограничений можно с помощью постобработки ДЛЛ-структур.

Одним из перспективных способов постобработки называют пиролиз, который одновременно обеспечивает как повышение разрешающей способности, так и введение новых функциональных возможностей. В частности, пиролизированные материалы продемонстрировали высокую термическую и радиационную стабильность наряду с повышенной механической прочностью. ДЛЛ с последующим пиролизом уже сейчас успешно применяется для получения углеродных наноэлектродов для нейромедиаторного зондирования, специальных наконечников для атомно-силовой микроскопии, фотонных кристаллов в видимом диапазоне и сверхпрочных механических метаматериалов.

Модель рентгеновской линзы на твердом постаменте: а – трехмерный вид, б – вертикальный разрез по оптической оси линзы / ©www.osapublishing.org

Пиролиз также улучшает разрешающую способность метода ДЛЛ, так как структуры, подвергшиеся пиролизу, показали значительную усадку по сравнению с исходным размером. Но усадка пиролизованных структур усугубляет проблему адгезии структуры к подложке, возникающую уже на этапе ДЛЛ. Указанные проблемы имеют важное практическое значение, однако пока исчерпывающих исследований по этим вопросам не было. Между тем, правильная оценка уменьшения размеров элементов и в целом всесторонняя оценка воздействия пиролиза на ДЛЛ-структуры совершенно необходимы в том случае, если стоит задача получить микроустройства с высокой точностью.

СЭМ-изображения структур, напечатанных из IP-Dip, OrmoComp и SZ2080. 
Верхний ряд: линза IP-Dip (а) до пиролиза и (б) после пиролиза при 450 градусов C. Средний ряд: линза OrmoComp (c) до пиролиза и после пиролиза в (d) 450 градусов C и (e) 690 градусов C. Нижний ряд: линза SZ2080 (f) до пиролиза и (f) после пиролиза при 690 градусов C / ©www.osapublishing.org

Ученые сектора нанофотоники Центра квантовых технологий МГУ поставили перед собой задачу провести сравнительное исследование влияния пиролиза на твердые объекты размером в десятки микрометров, напечатанные с помощью технологии ДЛЛ из трех коммерчески доступных фоторезистов: полностью органический IP-Dip и органо-неорганические OrmoComp и SZ2080. Для температур отжига 450 и 690 градусов Цельсия в атмосфере аргона были оценены изменения размеров, химического состава и адгезии к подложке кремниевой пластины.

В работе, опубликованной в журнале Optical Material Express, ученые ЦКТ подтвердили, что усадка структуры определяется типом фоторезиста, а также температурой пиролиза, атмосферой и геометрией структуры. Принимая во внимание поведение конкретного фоторезиста после постобработки с помощью пиролиза, можно добиться оптимальных результатов, в полной мере отвечающих поставленным конкретным задачам, и создавать износостойкие и надежные микро- и наноструктуры произвольной формы и почти любого назначения.

Сравнение показало, что более высокая температура приводит к более сильной усадке. Структуры из IP-Dip после отжига превращаются в стеклоуглеродные, в то время как содержащие неорганические вещества фоторезисты OrmoComp и SZ2080 при отжиге модифицируются в стекло. Структуры из Ip-Dip также демонстрируют наибольшую усадку из выбранных фоторезистов. Таким образом, ДЛЛ с последующим пиролизом фоторезиста Ip-Dip можно использовать для создания проводящих стеклоуглеродных структур.

OrmoComp пригодится для создания упорядоченных массивов оптических элементов, которые могут востребованы на источниках рентгеновского излучения. В свою очередь структуры из фоторезиста SZ2080 при пиролизе зачастую отсоединяются от подложки, что удобно для изготовления одиночных структур, которые затем требуется переместить в другую среду. Полученные данные могут быть в дальнейшем использованы при использовании технологии пиролиза в качестве стандартного метода постобработки структур, созданных по технологии ДЛЛ, и послужат активному развитию этого вида постобработки, отмечают ученые.

Источник: naked-science.ru

Yo Robot
Добавить комментарий