В НИТУ «МИСиС» впервые показали спин-орбитальное взаимодействие в антиферромагнетиках — Naked Science — yo-robot.ru

Ученые НИТУ «МИСиС» в составе международного исследовательского коллектива впервые продемонстрировали существование в антиферромагнетиках так называемого зеемановского спин-орбитального взаимодействия. Открытие может лечь в основу действия электронных приборов нового поколения.

НИТУ «МИСиС»

# антиферромагнитизм

# купраты

# магнитное поле

# спин-орбитроника

# электроны

В НИТУ «МИСиС» впервые показали спин-орбитальное взаимодействие в антиферромагнетиках / ©Пресс-служба НИТУ «МИСиС»

Исследование опубликовано в журнале npj Quantum Materials. Носитель тока в металлах и полупроводниках – электрон – имеет две фундаментальных характеристики: электрический заряд и магнитный момент, или «спин». Заряд позволяет управлять движением электрона и лежит в основе действия большинства современных электронных приборов. Спин же, в отличие от заряда, – не только фундаментальная характеристика, но и квантовая степень свободы.

Уже довольно давно ученым и инженерам всего мира не дает покоя идея создания нового поколения электронных приборов – таких, которые, наравне с зарядом электрона, использовали бы его спин. Эта область исследований – одновременно фундаментальных и прикладных, получила название «спинтроники» (spintronics). В перспективе спинтронные устройства позволят значительно увеличить скорость передачи информации и плотность ее записи на носители. Ожидается, что такие устройства, в силу их двухкомпонентной природы, найдут применение в квантовых компьютерах будущего.

При этом создание подобных приборов требует углубленного понимания явлений, связывающих спин электрона с его перемещением в пространстве – так называемого «спин-орбитального взаимодействия». Во многих соединениях спин-орбитальное взаимодействие оказывается слабым или требует использования тяжелых элементов, порождающего дополнительные трудности.

Одним из путей преодоления этих трудностей могло бы стать использование антиферромагнитных проводников: уже довольно давно было предсказано, что в таких веществах магнитное поле должно порождать спин-орбитальное взаимодействие весьма необычной природы. Это явление должно происходить от так называемого эффекта Зеемана, то есть от расщепления квантовых уровней электрона в магнитном поле. Дополнительное технологическое преимущество зеемановского спин-орбитального взаимодействия состоит в том, что его силу можно регулировать, меняя приложенное магнитное поле. Однако, до недавнего времени никаких экспериментальных подтверждений этому явлению не было.

В своей работе международный исследовательский коллектив с участием профессора НИТУ «МИСиС» Павла Григорьева впервые в мире экспериментально доказал существование зеемановского спин-орбитального взаимодействия. Более того, эффект удалось продемонстрировать в двух очень разных веществах: в органическом сверхпроводнике и высокотемпературном сверхпроводнике, принадлежащем к важному семейству рекордсменов высокотемпературной сверхпроводимости (купратов).

Структура, физика и механизмы антиферромагнетизма в этих веществах совершенно различны, что демонстрирует универсальный характер зеемановского спин-орбитального взаимодействия. В то же время, каждое из этих двух соединений представляет фундаментальный интерес, поскольку большинство существующих в настоящий момент квантовых вычислительных систем используют сверхпроводящие элементы.

2D-поверхность Ферми κ- БЕТС в парамагнитной и антиферромагнитной фазах / ©www.nature.com

Столь же фундаментальный интерес представляет и само явление зеемановского спин-орбитального взаимодействия. «Продемонстрированный в нашей работе механизм может быть заметно сильнее обычного спин-орбитального взаимодействия, что открывает перспективы разработки электронных приборов принципиально нового типа – например, использующих возбуждение спиновых переходов переменным электрическим, а не магнитным полем», – поясняет Павел Григорьев, профессор кафедры Теоретической физики и квантовых технологий НИТУ «МИСиС», старший научный сотрудник Института теоретической физики имени Л. Д. Ландау РАН.

Попутно в работе продемонстрирован (теоретически и экспериментально) интересный эффект, что в антиферромагнитных металлах эффективный g-фактор, определяющий зеемановское расщепление уровней энергии, обычно равен нулю в силу симметрии. То есть уровни энергии электронов в магнитном поле вообще не расщепляются из-за наличия их собственного магнитного момента. Это утверждение неожиданно, поскольку собственный магнитный момент электрона, приводящий к зеемановскому расщеплению, никуда не может исчезнуть.

Разрешение парадокса заключается в том, что квантовые уровни энергии электронов в магнитном поле предполагают полный оборот электрона по замкнутой орбите (из-за силы Лоренца). И в антиферромагнетиках на половине этой траектории электрон имеет спин вверх (по магнитному полю), а на половине спин вниз (противоположно полю). В итоге в среднем его магнитный момент равен нулю. Этот эффект важен для правильного определения электронной структуры различных соединений с помощью экспериментов в сильном магнитном поле.

Источник: naked-science.ru

Yo Robot
Добавить комментарий