В ННГУ в сто раз улучшили светоизлучающие свойства кремния — Naked Science — yo-robot.ru

Ученым ННГУ удалось повысить интенсивность светоизлучающих свойств кремния за счет оптимизации синтеза гексагональной фазы 9R-Si.

Университет Лобачевского

# кремний

# микроэлектроника

# нановключения

# наноэлектроника

# фотоника

В ННГУ в сто раз улучшили светоизлучающие свойства кремния / ©Пресс-служба ННГУ

По результатам исследования опубликована статья в высокорейтинговом журнале Applied Physics Letters. Предложенный метод получения нановключений гексагонального кремния — уникальная разработка нижегородских ученых. Она базируется на применении традиционной технологии микроэлектроники – ионной имплантации, которая широко применяется в промышленности для введения примесей в полупроводники при создании диодов и транзисторов.

До настоящего времени прогресс микроэлектроники – основы современных информационных технологий – базировался на производстве кремниевых интегральных схем. Сегодня, когда технологии переходят от электронных к фотонным схемам, обострился существенный недостаток кремния – его низкие светоизлучающие свойства. Отказ от кремния как основного материала микроэлектроники только замедлит развитие технологий.

Поэтому развитие необходимых светоизлучающих свойств этого материала остается одной из важнейших задач. Ее решение позволит совершить революционный скачок в области обработки и передачи сверхбольших объемов информации. Один из путей сохранения Si как материала электроники будущего – наноструктурирование кремния, заключающееся в формировании нанокристаллов (НК) Si в широкозонных матрицах (оксидах).

Схема эксперимента по формированию нановключений фазы 9R-Si в структурах SiO2/Si / ©Пресс-служба ННГУ

Исследование ученых ННГУ позволило выявить оптимальные режимы ионнолучевого синтеза светоизлучающих нановключений фазы 9R-Si в структурах кремний-диоксид кремния (SiO2/Si). Образование таких включений при ионном облучении этих систем впервые было обнаружено в ННГУ несколько лет назад.

Кремний в гексагональной фазе – это не какой-то один материал, а некоторое «семейство» кристаллов со схожей структурой, которая отличается от традиционного кремния кубической фазы своими свойствами вдоль одного из атомных направлений. Именно за счет этого меняются как электрические, так и оптические характеристики материала. Сотрудникам Университета Лобачевского удалось разработать методику синтеза кремния со структурой 9R, когда атомы кремния расположены «девятислойниками» (с периодом в девять атомных слоев) вдоль выделенного направления.

Спектры фотолюминесценции нановключений фазы 9R-Si в структурах SiO2/Si с различными толщинами пленки SiO2 / ©Пресс-служба ННГУ

Сегодня ученые доказали, что эти включения обладают лучшими излучательными свойствами по сравнению с обычным – кубическим – кремнием. Исследователи обнаружили взаимосвязи между условиями синтеза и люминесценцией полученных наноструктур и предложили механизм образования данной фазы кремния за счет механических напряжений, возникающих в пленке SiO2 при облучении, а также напряжений, связанных с проникновением ионов и атомов отдачи из пленки в подложку. 

Как оказалось, кремний с включениями 9R фазы излучает на большей длине волны по сравнению с кубическим (кубический кремний излучает в инфракрасном диапазоне на длине волны 1130 нм, а полученный учеными ННГУ – на длине волны 1240 нм). При этом существенно возрастает интенсивность излучения. По предварительным оценкам авторов исследования она увеличивается в сто раз. Излучение остается заметным и при более высоких температурах.

Структурные преобразования кремния к гексагональному кристаллу происходят за счет воздействия ионами инертного газа. Причем воздействие происходит даже не на сам кремний, а на слой кремниевого окисла толщиной около ста нанометров поверх материала. Оказывается, именно в таком случае интенсивность излучения формирующихся включений гексагонального кремния оказывается наибольшей.

Коллектив, работавший над разработкой / ©Пресс-служба ННГУ

Ученые объясняют этот эффект двумя факторами: размером формирующихся включений и количеством радиационных дефектов в них. После всех процедур слой окисла можно аккуратно удалить, как говорят технологи, стравить. В результате получается кремний с гексагональными включениями вблизи поверхности, который может быть использован для создания схем передачи данных с использованием света.

Метод ионной имплантации — один из базовых технологических подходов в микроэлектронике. Он легко масштабируется в промышленном варианте. Ученые планируют внедрение предложенного метода в технологии кремниевой фотоники. Ближайшая задача – научиться получать однородные слои и контролировать их толщину.

Работа была выполнена научно-исследовательской группой  лаборатории физики и технологии тонких пленок НИФТИ ННГУ. Коллектив авторов представляет известную в России и мире школу ионной имплантации, становление которой в Университете Лобачевского началось более 60 лет назад при участии одного из родоначальников этого метода в нашей стране – профессора Д. И. Тетельбаума. Ученый возглавляет эту школу и сейчас. 

Источник: naked-science.ru

Вы можете оставить комментарий, или ссылку на Ваш сайт.


Оставить комментарий

Вы должны войти, чтобы иметь возможность оставлять комментарии.