Ученые Сколтеха сделали шаг к созданию оптоэлектронных устройств нового поколения — Naked Science — yo-robot.ru

Исследователи Сколтеха и их коллеги из Великобритании и Польши предложили фотонное устройство, состоящее из двух оптических резонаторов на жидких кристаллах, и исследовали оптические свойства этой системы, которую в перспективе можно будет применять в оптоэлектронных и спинтронных устройствах следующего поколения.

Сколтех

# жидкие кристаллы

# зеркальный резонатор

# микрорезонатор

# оптоэлектроника

# фотоны

Ученые Сколтеха сделали шаг к созданию оптоэлектронных устройств нового поколения / ©Getty images

Результаты исследования опубликованы в журнале Physical Review B. Простейший оптический резонатор состоит из двух расположенных друг напротив друга зеркал, между которыми происходит отражение света. Если вы оказались между двух зеркал, вы увидите бесконечное количество своих отражений, а если в гораздо меньший по размеру, но чуть более сложный зеркальный резонатор поместить жидкий кристалл, например, кристалл экрана компьютера и смартфона, эффект окажется еще интереснее.

Ориентацию молекул жидкого кристалла можно менять, воздействуя на них с помощью электрического тока. В этой работе исследователи использовали этот эффект, что позволило им не только управлять характеристиками светового излучения внутри резонатора, но и, в некотором смысле, при помощи фотонов «смоделировать» работу привычных электронных устройств.

«Сегодня один из главных трендов в физике – это переход от традиционных электронных вычислительных систем к фотонным, что позволит не только значительно увеличить скорость обработки и передачи информации, но и существенно сократить энергопотребление. Именно поэтому в настоящее время огромный интерес у исследователей вызывают различные типы настраиваемых фотонных архитектур, имитирующих свойства их электронных аналогов», − рассказывает первый автор статьи студент магистратуры Сколтеха Павел Коханчик.

Он, а также профессор Сколтеха Павлос Лагудакис и их коллеги решили проверить, что произойдет, если два оптических резонатора с жидкими кристаллами разместить очень близко – всего в нескольких микрометрах друг от друга. Исследователи предположили, что у такого двойного микрорезонатора появятся новые свойства, отличные от тех, что присущи отдельному жидкокристаллическому микрорезонатору, которому было посвящено недавнее исследование, проводившееся в сотрудничестве с коллегами из Варшавского университета.

Оказавшись запутанными благодаря общему «бассейну» фотонов, резонаторы начинают вести себя подобно двум маятникам. Если маятники находятся на малом расстоянии друг от друга, они начинают двигаться синхронно и с одинаковой частотой. Исследователи установили, что в подобном случае у света появляются новые свойства, изучением которых занимается топологическая физика. Поскольку эти свойства поддаются тонкой настройке, созданное устройство позволяет имитировать большее количество физических систем как для целей фундаментальных исследований, так и для практических применений.

«Наша работа – лишь один маленький шаг в освоении огромной области исследований, посвященной изучению фотонных аналогов электронных твердотельных систем. За фундаментальными исследованиями непременно последует новый этап, целью которого станет миниатюризация этих устройств, серийное производство устройств на кристалле, а затем их интеграция в устройства повседневного использования. Но пока все это представляется лишь очень отдаленной перспективой», − отмечает Павел Коханчик.

Ученые планируют создать экспериментальную модель двойного жидкокристаллического резонатора для демонстрации богатого спектра физических свойств и эффектов, описанных в статье, а также продолжить исследование аналогичных систем с двойными микрорезонаторами, в том числе в режиме сильной связи между светом и веществом. Работа проводилась с участием ученых Саутгемптонского университета (Великобритания) и Института экспериментальной физики Варшавского университета (Польша). 

Источник: naked-science.ru

Ещё новости

Вы можете оставить комментарий, или ссылку на Ваш сайт.


Оставить комментарий

Вы должны войти, чтобы иметь возможность оставлять комментарии.