Апатитские химики применили новый математический метод для изучения электрохимических свойств титана — Naked Science — yo-robot.ru

Благодаря использованию электрохимических экспериментов и квантово-химических расчетов исследователи из Апатитов смогли лучше понять механизм процесса переноса электрона в расплавленных солях. Систематические исследования этих процессов позволят существенно продвинуться на пути понимания закономерностей, определяющих механизм и кинетику электродных процессов в расплавленных солях, а значит разобраться в электрохимических свойствах титана и найти оптимальные условия для его получения и рафинирования из расплавов солей.

КНЦ РАН

# металлы

# соли

# Титан

# цирконий

# электрохимические свойства

Апатитские химики применили новый математический метод для изучения электрохимических свойств титана / ©Getty images

Титан – очень распространенный в природе элемент. Он замыкает «могучую девятку» самых распространенных элементов, составляющих 99,9 процентов массы всей земной оболочки. Его уникальные свойства известны давно, однако применить их до сих пор получается не в полной мере. Почему?

Сначала перечислим три главных конкурентных преимущества титана перед другими металлами. Во-первых, он обладает высокой удельной прочностью (этот коэффициент показывает, насколько прочной будет конструкция из того или иного материала при одной массе). Во-вторых, из всех металлов он наиболее биосовместим, что делает его идеальным выбором для биомедицинских имплантатов.

В-третьих, его коррозионная стойкость уступает только ниобию, танталу, цирконию и молибдену – и это еще один плюс для использования в медицине, а также повод выбрать титан для морского применения. Словом, для замены стали титан мог бы стать идеальным конструкционным металлом. Но что этому мешает?

©Пресс-служба Кольского научного центра

Есть одно важное препятствие: высокая себестоимость получения металлического титана. В основном это связано с тем, что соединения титана весьма прочны и стойки к химическим воздействиям, поэтому выделить чистый титан привычными металлургическими методами крайне сложно. При этом тот самый чистый титан очень быстро и бурно реагирует с элементами окружающей среды (азотом, водородом, кислородом и углеродом), образуя устойчивые соединения и теряя все свои уникальные преимущества. Впервые в чистом виде его смогли получить только в 1940-х годах в количестве всего 40 килограммов, а промышленное производство наладили в конце 1950-х.

Пионером в изучении способов получения и применения металлического титана было Горное управление США. Разработанные в этой организации методы долгое время применялись во всем мире, однако стоимость получаемого вещества была баснословно высокой. С тех пор появились новые пути получения титана, но поиски действительно оптимального с точки зрения стоимости и сложности пути еще не закончены.

Один из перспективных методов получения титана – это прямое восстановление TiO2 в расплаве солей. Затем необходимо очистить титан от различных примесей, например, с помощью его электрорафинирования в солевых расплавах. Эта методика пока не отлажена, и для оптимизации процесса электролитического рафинирования титана необходима полная информация о транспортных и кинетических свойствах его комплексов в различных расплавах солей. В связи с этим важно исследовать электрохимическое поведение комплексов титана.

©Пресс-служба Кольского научного центра

Первоначальная гипотеза ученых заключалась в следующем: катионы щелочноземельных металлов обладают большим ионным моментом (отношением заряда иона к его радиусу) по сравнению с катионами щелочных металлов. Поэтому их присутствие в расплавленных галогенидах щелочных металлов приводит к значительным изменениям в структуре комплексных ионов титана, а следовательно, и к изменениям кинетических и транспортных свойств титансодержащих расплавов. Отследить подобные изменения можно как классическими электрохимическими методами, так и при помощи квантовохимического моделирования.

Комбинация электрохимических и квантово-химических методов позволит взглянуть на процесс переноса электрона с двух различных точек зрения и предоставит более подробную информацию о процессе, а также даст необходимый импульс для совершенствования методов получения и очистки титана. Такими исследованиями кропотливо занимаются сотрудники Института химии и технологии редких элементов и минерального сырья Кольского научного центра РАН. В журнале Journal of The Electrochemical Society была опубликована их статья об исследовании переноса электрона в титансодержащих расплавах электрохимическими и квантово-химическими методами.

Ученые обнаружили, что прямой расчет переходного состояния для переноса электрона в расплавленных солях квантово-химическими методами практически невыполним, поскольку модельные системы, предназначенные для исследования механизма переноса заряда, должны состоять из большого числа частиц. Время расчета прямо пропорционально кубу числа частиц, и для вычислений потребуется огромное количество компьютерного времени.

Поэтому был предложен подход, основанный на анализе граничных молекулярных орбиталей при разных деформациях исходной структуры. Традиционно этот метод использовался для описания химических свойств различных молекул, но авторы предположили, что он будет результативен и для моделирования процессов переноса электрона в расплавах солей.

Метод, который применили апатитские исследователи, позволяет наглядно показать состояние молекулярных орбиталей. Наибольшее внимание уделяется нижней свободной и верхней занятой молекулярным орбиталям. Вид нижней свободной молекулярной орбитали для комплекса титана в начальном (до получения электрона) состоянии говорит о том, что электрон не может попасть на комплекс с катода, так как комплекс экранирован от него ионами граничного слоя.

Перенос электрона становится возможным, если эта орбиталь будет растянута между граничным катионом кальция и комплексом титана. Кроме того, необходимо проверить, как будет выглядеть верхняя занятая молекулярная орбиталь после переноса электрона. Если она по-прежнему растянута между граничным катионом кальция и комплексом титана, такая структура может соответствовать переходному состоянию процесса переноса электрона.

В работе использовали хлориды натрия и калия (в эквимолярном соотношении) с добавками NaF, K2TiF6 и CaCl2 в качестве расплавленной солевой смеси. Кинетика переноса электрона для редокс-пары Ti (IV) / Ti (III) в этом расплаве была исследована методом циклической вольтамперометрии при различных концентрациях катионов кальция. Авторы рассчитали энергию активации процесса переноса электрона, которая снижалась при добавлении в расплав катионов кальция. Другими словами, катионы кальция облегчали перенос электрона с катода на комплекс титана, и реакция восстановление титана проходило быстрее.

Квантово-химические расчеты, проведенные с использованием пакета программ Firefly, показали, что метод граничных молекулярных орбиталей высоко информативен для исследования переноса электрона в модельной системе CaTiF6 + 12CaCl2. Это позволило с небольшими затратами компьютерного времени определить структуру переходного состояния комплекса TiF62− вблизи поверхности электрода.

Варьируя параметры переходного состояния, исследователи обнаружили структуры с высокой вероятностью переноса электрона с катода на комплекс титана. Во время квантово-химических симуляций они выяснили, что структура переходного состояния существенно разупорядочена, а это соответствует реальному состоянию пограничного слоя у поверхности электрода. Ученые установили, что перенос электронов происходит преимущественно через структуры, в которых комплексы титана имеют связи Ti-F, сжатые полносимметричными колебаниями, а разупорядочение состояние пограничного слоя ионов компенсирует энергетические затраты таких колебаний.

Благодаря использованию электрохимических экспериментов и квантово-химических расчетов исследователи из Апатитов смогли лучше понять механизм процесса переноса электрона в расплавленных солях. Систематические исследования этих процессов позволят существенно продвинуться на пути понимания закономерностей, определяющих механизм и кинетику электродных процессов в расплавленных солях, а значит – разобраться в электрохимических свойствах титана и найти оптимальные условия для его получения и рафинирования из расплавов солей.

Источник: naked-science.ru

Yo Robot
Добавить комментарий